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Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground
cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland for-
mations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and
Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground mea-
surements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP)
and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range
(VNIR, 400–900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables
(HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of
seven post-fire ground cover types (vegetation and soil – unburned and charred components – and ash
– char and ash, individually and as a combined category). Models were developed and validated at the
Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and
Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation
(R2

adj: 0.70–0.90), unburned soil (R2
adj: 0.40–0.75), and the combination of ashes (R2

adj: 0.65–0.80). In com-
parison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy
levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made
to improve the estimation of intermediate severity levels and upscaling the developed models. In the con-
text of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in
a quick and objective manner post-fire ground cover fractions and thus provide valuable information to
guide management responses.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Immediate or first-order effects of fire on an environment,
referred to as fire severity following the terminology of Lentile
et al. (2006), Veraverbeke et al. (2010) and others, is of interest
to forest management primarily because it is presumed to be an
indicator of long-term ecosystem response (also referred to as burn
severity or second-order effects). Many researchers have already
shown its influence on vegetation recovery (Díaz-Delgado et al.,
2003), changes in below-ground flora and fauna (Neary et al.,
1999), seedling germination after fire (De Luís et al., 2005), species
richness (Keeley et al., 2005), changes in soil structure (Mataix-
Solera and Doerr, 2004), and runoff and erosion processes (Doerr
et al., 2006; Moody et al., 2013), among others.

An adequate remote sensing assessment of fire severity is of
great importance, especially in a region such as the Mediterranean,
where forest fire size and frequency are increasing (Tedim et al.,
2013) and higher intensity and severity levels are being observed
(Chuvieco et al., 2008). Traditional assessment has been based on
spectral indices derived from multispectral satellite imagery,
mostly from Landsat TM or ETM+ sensors (a.o. Epting et al.,
2005; Picotte and Robertson, 2011; van Wagtendonk et al.,
2004). The normalized ratio of near-infrared (NIR, band 4) and
short-wave infrared (SWIR, band 7), known as the Normalized
Burn Ratio (NBR, López and Caselles, 1991), and its delta or relative
delta versions (dNBR and RdNBR, Key and Benson, 2006; Miller and
Thode, 2007) have been widely applied empirically to estimate the
field severity index Composite Burn Index (CBI, Key and Benson,
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2006) or its modified version, the GeoCBI (De Santis and Chuvieco,
2009). Although moderate to high determination coefficients are
frequently observed (a.o. Tanase et al., 2011; Veraverbeke et al.,
2010), a number of limitations and disadvantages of this approach
have been reported in the literature (see Lentile et al., 2009 for
examining the limitations in detail). Apart from the criticism of
the performance of NBR as a severity index (Roy et al., 2006), the
arguments against a CBI that mixes first and second-order effects
(Keeley, 2009), or the uncertainties regarding the best suitability
of NBR from a mono- or bi-temporal point of view, and between
initial or extended assessment (e.g. Epting et al., 2005; Hudak
et al., 2007; Picotte and Robertson, 2011; Veraverbeke et al.,
2010; Zhu et al., 2006), two main drawbacks of this approach can
be highlighted. These are: (i) some studies developed in Mediter-
ranean areas report an inadequate prediction of second order
effects in terms of vegetal regeneration (Keeley et al., 2008;
Vicente-Serrano et al., 2011) and erosion (Pérez-Cabello et al.,
2006); and (ii) spectral indices are physically meaningless without
field calibration (Hudak et al., 2007; Lentile et al., 2006).

Identification and quantification of the fractional abundance of
post-fire ground cover types has emerged as an alternative
approach for fire severity assessment (Lentile et al., 2006; Roy
et al., 2013). A typical post-fire environment is thus considered
to be a mixture of vegetation and soil, as unburned cover types,
with ash and charred components (a.o. Edwards et al., 2013;
Lewis et al., 2007; Robichaud et al., 2007; Veraverbeke et al.,
2012b). In contrast to the spectral indexes, as Lentile et al., 2009
points out, this approach produces measures with a physical
meaning, directly analogous to traditional field measurements of
% green, % brown, and % black. Furthermore, many researchers have
shown the important influence of these cover types on ecosystem
response: e.g., presence of green vegetation controls runoff and ero-
sion processes (Cerdà and Doerr, 2005); charred vegetation increases
soil water retention and decreases overland flow and soil losses
(Cerdà and Doerr, 2008; Pannkuk and Robichaud, 2003; Shakesby
and Doerr, 2006); loss of organic matter in burned soils alters aggre-
gate stability and porosity and then resistance to erosion and infiltra-
tion rates (Arcenegui et al., 2008; Doerr et al., 2006; Mataix-Solera
and Doerr, 2004; Mataix-Solera et al., 2002); presence of an ash layer
may reinforce or delay overland flow (Balfour et al., 2014; Bodí et al.,
2012; Cerdà and Doerr, 2008), can increase or decrease sediment
concentration depending on the temporal approach (Cerdà and
Doerr, 2008; Pérez-Cabello et al., 2012; Woods and Balfour, 2008),
and can alter soil hydrophobicity depending on the soil and ash
properties and the ash thickness (Bodí et al., 2011).

Using different techniques such as sub-pixel methods (SMA, a.o.
Lewis et al., 2011; Veraverbeke et al., 2012b and MTFM, a.o. Lewis
et al., 2008; Robichaud et al., 2007) or continuum-removal trans-
formation (Kokaly et al., 2007), hyperspectral data have been the
basis of studies developed under this approach. Hyperspectral sen-
sors provide data in contiguous narrow bands of reflectance spec-
tra, thus offering a greater capability to distinguish specific spectral
features and thereby identify the diversity of post-fire cover types.
Visible to short-wave infrared (VSWIR, 0.4–2.5 lm) has been the
spectral range most deeply explored, although recent research
has also examined the potential benefits of a combination of
VSWIR and mid to thermal infrared (MTIR, 3.5–12.5 lm) data
(Veraverbeke et al., 2012a).

In this context, we aim to explore and characterize the spectral
properties of post-fire ground cover types and develop empirical
models that allow the quantification of their fractional abundance.
We focus on Mediterranean shrubland areas and work with field
methodologies (high spatial resolution photography and field spec-
trometry) that provide an accurate mapping of observed fractions
and hyperspectral reflectance values. Using original and trans-
formed spectral data, we assess the accuracy of the models and
the suitability of the spectral datasets in a practical application of
the results.
2. Study area

In a broader sense, this study focuses on the shrubland forma-
tions of Mediterranean areas. Various reasons explain the interest
in these formations. Shrublands are one of the most important
plant formations in Mediterranean-type ecosystems. Considering
its dynamic, shrublands now occupy abandoned arable fields
(Gartzia et al., 2014; Lasanta et al., 2011) and are also replacing
previously forested areas as a consequence of increasing fire fre-
quency and severity (De Luís et al., 2006; Pausas et al., 2008). Fol-
lowing this growing trend, they constitute the highest percentage
of annual burned area in Spain over the last decade (data from
the Spanish Statistical Office http://www.ine.es/dyngs/IOE/es/op-
eracion.htm?numinv=04002, accessed October 10, 2015). This
highlights their interest from a forest fire perspective, especially
as future climatic trends will tend to reinforce the changes already
observed (Komac et al., 2013; Rodrigo et al., 2004), pointing to
higher fire risk indices in these shrub-type species Mouillot et al.,
2002. From a fire severity viewpoint, shrubland is the vegetation
type where assessment of this variable has achieved less satisfac-
tory results (Epting et al., 2005), and consequently where the
hyperspectral approach could produce the most significant pro-
gress (Finley and Glenn, 2010). Finally, the low height of this plant
formation provides the perfect methodological setting to apply the
selected field techniques.

Specifically, post-fire ground cover in Mediterranean shrub-
lands was examined in three burned areas in Aragón, in the north-
east of the Iberian Peninsula (Fig. 1). Shrubland formations in these
areas vary according to location, from the semiarid environment in
the central Ebro Depression to the transitional environment of the
Pyrenees.

The first area is the wildfire that occurred in Ibieca (IWF) on June
14th, 2006, where 300 ha of crops and 200 ha of shrubland and
Quercus ilex L. were burned. The specific study site (coordinates
of centroid X, Y: 732,345E, 4,671,170N, UTM 30T, European Datum
1950; EPSG 23030) covers 3200 m2 and is composed of Juniperus
oxycedrus L., Rubia peregrina L., and Ligustrum vulgare L. as main
plant species.

The second area is also a wildfire, occurring in the pine forest of
Zuera (ZWF) on July 25th, 2006. Caused by lighting, the fire burned
40 ha of Pinus halepensis Mill. and a dense shrub understory of
Quercus coccifera L., Rosmarinus officinalis L., Thymus vulgaris L.,
Genista scorpius L., and Juniperus communis Lam. at the study site
(coordinates of centroid X, Y: 671,501E, 4,639,210N, UTM 30T,
European Datum 1950; EPSG 23030).

The third area is in Peñaflor (PEF) where two experimental fire
plots, covering a total area of 455 m2, were burned on October
19th, 2007 (coordinates of centroid X, Y: 685,539E, 4,628,820N,
UTM 30T, European Datum 1950; EPSG 23030). The experimental
fire plots consisted of sparse shrubland dominated by Rosmarinus
officinalis L. and Brachypodium retusum Pers. The species Helianthe-
mum lavandulifolium Desf., Helianthemum marifolium L., Thymus
vulgaris L., Artemisia herba-alba Asso., Salsola vermiculata L., and
Linum strictum L. were also present.
3. Materials and methods

3.1. Ground measurements

3.1.1. Experimental design
Data were acquired in the immediate hours or days after the fire

events, giving a total sample of 356 plots from the three study sites
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Fig. 1. Location map and aerial views of the study sites: wildfires at Ibieca (IWF) and Zuera (ZWF) and the experimental fire at Peñaflor (PEF).
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(Table 1). Considering the errors in spectral measures related to
illumination conditions (Milton et al., 2009), field measurements
were made on days with clear weather conditions, with direct solar
irradiance being the dominant source of energy incident on the tar-
get (Table 2). In the same way, measurements were restricted to a
2-h period around solar noon, when changes in the solar zenith
angle are lower.

Field techniques – high spatial resolution photography or HSRP
(adapted from the original methodology detailed in Pérez-Cabello
et al. (2012)), and field spectrometry – were applied sequentially
in each plot. Platforms were used to maintain a fixed viewing
geometry between the sensor and the target (constant height,
nadir position) and to ensure both sensors (digital camera and field
spectroradiometer) were sensing the same area (Fig. 2). Two differ-
ent platforms were used depending on the sampling pattern
selected (Table 1). In the Ibieca and Zuera study sites, with a
greater surface area, a simple random sampling pattern with a
mobile platform (height 1.5 m, width 0.7 m, Fig. 2 above) was
applied. The number of plots sampled in these sites (n = 14 and
n = 37 in IWF and ZWF sites, respectively) was influenced by the
need to cover a big surface in a restricted time period, and using
a platform with only one measuring point, which involved the
installation and removal of both sensors at each plot and also the
individual calibration of each spectral measurement.

At the Peñaflor experimental fire site, a larger platform (height
2 m, width 3 m, Fig. 2 below) was used. This platform allowed the
application of a systematic sampling pattern of 35 points (resulting
from the combination of seven marked positions placed 40-cm
apart in the longitudinal axis and five anchor points placed 50-
cm apart in the mobile superior crossbar, see red marks in Fig. 2
below). New sampling strategy was significantly less time-
consuming because the installation of sensors and the spectral cal-
ibration was made only once for each platform location, a total of
ten positions spatially distributed in the study site and covering
unburned and burned ground covers. Therefore, a higher number
of samples (n = 305, after the removal of erroneous data) were
obtained in a relatively small burned area.
3.1.2. High spatial resolution photographs
Vertical high spatial resolution photographs (HSRP) were

obtained with a digital camera Reflex Nikon D70 in the visible
Table 1
Experimental design data.

Study site Fire date (dd/mm/yy) Fieldwork date Number of plots

IWF 14/06/06 26/06/06 14
ZWF 25/07/06 28/07/06 37
PEF 19/10/07 19/10/07 305
(VIS) spectral range with a 0.5-mm spatial resolution
(Pérez-Cabello et al., 2012). Remote control of the digital camera,
attached to the platforms described above, allowed the operators
to remain some distance from the target during measurements
and thus avoid shadow problems.
3.1.3. Field spectrometer data
Measurements of the hemispherical conical reflectance factor

(HCRF) (Schaepman-Strub et al., 2006) were captured using two
field spectroradiometers, both over the 400–900 nm wavelength
range (visible, VIS, to near infrared regions, NIR) but with differ-
ences in their spectral characteristics. The Ocean Optics USB2000,
used for the wildfire sites of Ibieca and Zuera, reports reflectance
for 1462 channels at a 0.33-nm sampling interval, 1.34-nm FWHM
(full width half maximum) spectral resolution, and a signal-to-
noise ratio (SNR) of 250:1. The Avantes AvaSpec-2048, used for
the Peñaflor experimental fire site, reports reflectance for 874
channels at a 0.57-nm sampling interval, 2.4-nm FWHM spectral
resolution, and SNR of 200:1. Both field spectroradiometers were
calibrated against a Spectralon (Labsphere Inc., North Sutton, NH,
USA)�100% reflective panel at frequent intervals during field spec-
tra collection. Every spectrum was corrected for dark current effect
and was obtained from an average of 20 spectra to avoid random
noise in sample and calibration panel measurements. Spectra from
the Ocean Optics instrument were collected with a 10� foreoptic
from a height of �1.5 m (Field of view (FOV) 13-cm radius). Spectra
from the Avantes AvaSpec instrument were collected with a bare
tip foreoptic (25�) from a height of �2 m (FOV 44-cm radius). Both
FOV were assumed to be homogenous (Table 1 and Fig. 2).

Two different tests were applied to assess the quality of spectral
data regarding (1) wavelength shift and (2) intercomparison of
reflectance values. (1) In the wavelength test, calibrated light
sources (blue, green, red, and NIR LED lamps) were used as refer-
ence. Low root mean square error (RMSE) values (�1 nm and
�2.5 nm) were observed in both sensors for VIS and NIR regions,
respectively, always with a negative bias. (2) In the reflectance val-
ues test, spectra measured with the two sensors were compared.
The same surface of a photosynthetically active leaf was captured
by both sensors and under the same controlled illumination condi-
tions. Very low error values (RMSE � 0.3% and �0.5% for the VIS
and NIR regions, respectively) were also observed, with a slight
Field spectroradiometer Platform Sampling FOV radius

Ocean Optics USB 2000 1.5 m height Random 13 cm
Ocean Optics USB 2000 1.5 m height Random 13 cm
Avantes AvaSpec-2048 2 m height Systematic 44 cm

Spectral Technology Instrument Co.,Ltd.
Highlight

Spectral Technology Instrument Co.,Ltd.
Highlight



Table 2
Illumination conditions of fieldwork days.

Study
site

Fieldwork
date

Weather conditions Illumination geometry

Average air
temperature (�C)

Precipitation
(mm)

Direct solar
radiation (w/m2)

Diffuse solar
radiation (w/m2)

Solar time
(GTM+00)

Change in solar
zenith angle

IWF 26/06/06 28.7 0 3212 556 10:52–12:30 4�
ZWF 28/07/06 27.1 0 3028 550 10:47–11:43 3�
PEF 19/10/07 18.6 0 2604 291 10:33–13:06 5�

⁄Solar radiation data were provided by the Spanish meteorological agency (AEMET).

Fig. 2. Viewing geometry: front and top view of the sampling platforms. Photographs show a detail of various FOVs at the target depending on the instrument’s field of view
and sensor-target distance.
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overestimation of values (bias � 0.1%) in the VIS region of the
Avantes AvaSpec spectroradiometer compared to the Ocean Optics,
and vice versa in the NIR region (bias � �0.5%).

3.2. Data processing

3.2.1. HSRP-derived estimates of post-fire ground cover components
The area sensed by the field spectroradiometers (13-cm or 44-

cm radius from the nadir position) was extracted from the digital
photographs obtained by HSRP. The 356 circular-shaped files were
merged in mosaic images (one image per study site) to apply a
supervised classification process in a homogeneous and simultane-
ous manner. According to HSRP procedure (Pérez-Cabello et al.,
2012), the method involved a three-spectral supervised maximum
likelihood classification. After establishing the training areas using
photo-interpretation, the mean values and variances of the digital
numbers (DNs) for the three bands used in classification were cal-
culated from all the pixels in each class. The classification works by
comparing every pixel of the HSRP images with the various
signatures obtained in the training process, and assigning them
to the class with the closest signature.

The fractional cover of six post-fire ground cover components
was estimated as a result of the classification process: green
unburned vegetation (GV), unburned soil (UBS), brown non-
photosynthetic vegetation (NPV) or scorched vegetation, burned
soil (BS), black char, and white ash (Fig. 3a). The shadow compo-
nent was also estimated so that all cover fractions summed to
unity.

Classification accuracy was evaluated from a validation sample
of n = 210 (70 random points in each of the 3 burned areas). Global
accuracy of the classification map obtained is 93%, with a Cohen’s
Kappa coefficient of 0.83 (Table 3). As observed in the confusion
matrix, GV is the ground cover with the highest classification accu-
racy (user’s and producer’s accuracy of 100%) and, conversely, BS
throws the lowest value (user’s and producer’s accuracy of 38%
and 33%, respectively), with problems with the remaining
categories except GV. Accuracy values of UBS, NPV, char, ash, and
shadow range from 0.82 to 0.96, observing some confusion



Fig. 3. Estimation of post-fire ground cover components: (a) original photographs and (b) detail of the classification results obtained.
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between char/ash and char/shadow pairs. Fig. 3b shows examples
of the accuracy achieved in discrimination of the surface cover.

3.2.2. Processing of surface spectral reflectance data
Three different processes were applied to the spectral database

in order to improve the signal-to-noise ratio (SNR) and obtain new
hyperspectral variables.

A Savitzky–Golay filter was used to smooth the spectral data in
the 400–900 nm spectral region (Savitzky and Golay, 1964;
Steinier et al., 1972). According to the depth of the absorption fea-
tures and the FWHM of the data, a polynomial degree 3 and a fil-
tersize 40 (27-nm and 46-nm width of the smoothing window in
the data from the Ocean Optics and Avantes AvaSpec instruments,
respectively) were the parameters chosen, improving the SNR by a
factor of 9.

Derivative transformation and spectral feature analysis
methods were applied to the smoothed spectra to calculate the
slope values from the reflectance and to identify and isolate
absorption features. Standard first derivative reflectance spectra
(FDS) and normalized reflectance with the continuum removal
method (R0) were the new hyperspectral variables obtained
(Eqs. (1) and (2)). Four absorption indices were also calculated
from the continuum-removed reflectance spectra (Eqs. (3)–(6)):
band depth (BD), band depth ratio or band depth normalized to
Table 3
Confusion matrix of the classification map derived from HSRP.

Ground truth Classification

GV UBS NPV BS C

GV 22 0 0 0
UBS 0 38 0 5
NPV 0 0 18 4
BS 0 3 2 6
Char 0 0 0 0 3
Ash 0 0 0 1
Shadow 0 0 0 0
Total 22 41 20 16 4

User’s accuracy 1.00 0.93 0.90 0.38

Overall accuracy: 0.93
Cohen’s Kappa: 0.83
band depth at the center (BDR), normalized band depth index
(NBDI), and band depth normalized to area (BNA).

FDSkðxÞ ¼ RkðyÞ � RkðxÞ
kðyÞ � kðxÞ

ð1Þ

where FDSkðxÞ is the first derivative reflectance spectra in the wave-
band x, and RkðxÞRkðyÞ are the reflectance values of the consecutive
wavebands x and y (Dawson and Curran, 1998).

R0
ðkiÞ ¼

RðkiÞ
RcðkiÞ

ð2Þ

where R0
ðkiÞ is the continuum-removed reflectance, RðkiÞ is the reflec-

tance value for each waveband in the absorption feature, and RcðkiÞ
is the reflectance level of the continuum line (convex hull) at the
corresponding wavelength (Mutanga et al., 2004).

BDðkiÞ ¼ 1� R0
ðkiÞ ð3Þ

BDRðkiÞ ¼
BDðkiÞ
Dc

ð4Þ

NBDIðkiÞ ¼ BDðkiÞ � Dc

BDðkiÞ þ Dc
ð5Þ
Producer’s accuracy

har Ash Shadow Total

0 0 0 22 1.00
0 1 0 44 0.86
0 0 0 22 0.82
3 4 0 18 0.33
6 2 0 38 0.95
3 42 0 46 0.91
2 0 18 20 0.90
4 49 18 210

0.82 0.86 1.00
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BNAðkiÞ ¼ BDðkiÞ
A

ð6Þ

where R0
ðkiÞ is the continuum-removed reflectance at waveband i;

BDðkiÞ is the band depth at waveband i; Dc is the band center, which
is the maximum band depth; and A is the area of the absorption fea-
ture (Curran et al., 2001; Mutanga et al., 2004).
3.3. Statistical analysis

Stepwise multiple lineal regression (SMLR) models were fitted
to independent explanatory variables – that is, the six spectral
datasets (HCRF, FDS, BD, BDR, NBDI, BNA) – to estimate the depen-
dent variables – that is, fractional cover estimation of six individual
post-fire ground cover components (GV, UBS, NPV, BS, char and
ash) and a mixed category obtained by combining the last two
ash-related covers. HCRF and FDS equations were generated from
the entire spectrum (874 wavebands from 400 to 900 nm),
whereas 66% of each spectrum (574 wavebands of the two absorp-
tion features described in Section 4.1) was used in the absorption
datasets. The primary assumptions of regression analysis were
tested and satisfied: (i) linearity, by visual analysis of residual plots
showing the standardized residuals vs. the predicted values; (ii)
independence of errors, by Durbin–Watson statistic; (iii) normal-
ity, through histograms of the standardized residuals; (iv)
collinearity, through tolerance, variance inflation factors (VIF)
and condition index; and (iv) homocedasticity, by visual examina-
tion of a plot of the standardized residuals vs. the standardized
predicted values.

The stepwise regression was run separately for each of the pre-
vious combinations for a total of 42 runs. Their prediction power
was compared using the association strength between variables,
which was expressed by the adjusted determination coefficient
(R2

adj:) and the amount of error, which was expressed by the root
mean square error (RMSE).

A total of 217 plots at the PEF site (n = 305) were randomly
selected as a training set using a ratio of 70–30. The full range of
post-fire components (severity levels) was represented in this sub-
sample. The remaining 88 points at the PEF site and 51 points at the
IWF and ZWF sites (IZWF) were used as two validation sets. Specifi-
Fig. 4. Mean spectral signatures of post-fire ground cover components (GV, UBS, NPV, BS,
(above), first derivative spectra (middle), and band depth (below). See Table 4 for furth
cally, the validation in IZWF dataset can be considered an evalua-
tion of the potential to apply the empirical models in natural
fires and to different sensors. The empirical fitting was evaluated
using the R2

adj: and RMSE between observed and predicted values.
Comparison of endmembers between the three burned areas

was made using the mean absolute error (MAE).
4. Results

4.1. Spectral properties of post-fire ground cover components

The spectrum average of non-mixed samples of each post-fire
ground cover (abundance values higher than 75%) was used as
endmember for spectral characterization. The spectral curves of
the endmembers in reflectance, FDS, and BD values are presented
graphically in Fig. 4. Specific data on the absorption features
observed in GV endmembers are also included in Table 4.

The spectral signatures observed in the three study sites are in
line with what has been reported in the literature. GV shows the
well-documented contrast between the VIS and the NIR regions
(low and high reflectance values, respectively), with two absorp-
tion features associated with leaf pigments and centered around
500 nm and 680 nm (Fig. 4 and Table 4). Continua endpoints of
the absorption features observed are within ±15 nm of the limits
described in other publications (Curran et al., 2001; Kokaly et al.,
2003; Noomen et al., 2006). The FDS of GV clearly shows the
greater amount of spectral variation in this ground cover. Fire
results in the removal of absorption features and the loss of spec-
tral variation. Thus, NPV exhibits higher reflectance values in the
VIS region and lower values in the NIR region, and consequently
a flatter derivative spectral profile. The 680-nm absorption feature
is still visible in the NPV ground cover but with a great loss of
absorption depth and width (mean band depth from 0.75 to 0.19
and mean band width from 120 nm to 40 nm).

UBS reflectance increases linearly by around 15–30% over the
400–900 nm spectral range and is spectrally featureless in terms
of notable absorption features. BS exhibits a similar spectral reflec-
tance pattern to UBS but with lower reflectance values (decreases
of �5% in the 400 nm and �15% in the 900 nm).
char and ash) collected from the study sites. Spectral curves are for HCRF reflectance
er details on the 500-nm and 680-nm absorption features.



Table 4
Continuum endpoints and band center definitions for the 500-nm and 680-nm
absorption features observed in the reflectance spectra of GV endmembers in the
three study sites.

Study
site

Designation
of absorption
feature

Location of absorption feature

Short
wavelength
end

Band
Center

Long
wavelength
end

IWF 500 400.25 492.79 533.64
680 557.26 680.01 749.21

ZWF 500 400.25 494.98 539.39
680 556.90 678.31 746.23

PEF 500 400.24 498.25 543.69
680 558.20 678.56 745.73

Note: All wavelengths are given in nm.
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Char has a very low spectral reflectance right across the 400–
900 nm spectral range (<10%) and is spectrally featureless. Accord-
ing to other authors (Smith et al., 2005), its presence in the burned
areas represents the point with the lowest mean and variance of
the surface spectral reflectance at all wavelengths. Ash exhibits a
significantly higher reflectance than char, with values that increase
from VIS to NIR at a higher rate (<5% in char and �5–15% in ash).

Comparison of the study sites shows differences between the
spectral curves of the endmembers. Mean absolute error values
reveal that the greatest contrast is in the HCRF comparison (MAE
values in the range 0.33–9.25% and a mean global value of 4% for
the three burned areas), especially in the UBS and ash covers
(MAE values higher than 6%), and that FDS transformation softens
the differences and even the spectral behavior of the post-fire
ground cover between the burned areas (MAE values in the range
0.5–2.8% with a mean global value of 1.65%).
4.2. Assessing the performance of the spectral datasets in estimating
post-fire ground cover fractions

Table 5 summarizes the results from the linear regression in the
training set and their validation. Only models with a minimum
threshold of R2

adj: P 0.50 in any of the datasets are reported. Of
the four absorption indices used for estimation, only the regression
Table 5
Summary of the SMLR models developed on the HCRF, FDS, and BD data. The accuracy of es
the RMSE.

Post-fire ground cover Regression model

HCRF dataset
GV �2.006 + (2.743 � HCRF_B876) � (3.066 � HCRF_B695.12)
UBS �7.717 + (4.357 � HCRF_B707.09) � (3.890 � HCRF_B400.
Char 31.624 � (1.151 � HCRF_B900.43)
Ash 7.631 + (11.635 � HCRF_B400.24) � (5.337 � HCRF_B576.7
Char/ash 46.796 – (2.857 � HCRF_B900.43) + (5.816 � HCRF_B400.2

FDS dataset
GV �0.575 + (132.298 � FDS_B710.51)
UBS �0.090 + (981.892 � FDS_B434.98)
Char 25.245 � (734.278 � FDS_B759.32) + (154.946 � FDS_B67
Ash 32.925 � (538.304 � FDS_B755.35) � (264.844 � FDS_776
Char/ash 58.054 � (1366.975 � FDS_B756.49)

BD dataset
GV 1.551 + (99.285 � BD_B705.95)

Note: Only regression models with R2
adj: P 0.50 in the training or validation datasets are s

the selected wavebands refers to the spectral dataset used for estimation. Spectral band
equations derived from BD data are shown due to the greater accu-
racy of the results obtained on this spectral dataset (difference in
R2
adj: from 0.01 to 0.15). Accordingly, a total of 10 empirical models

for the estimation of post-fire ground covers have been developed
in this study with a number between 1 and 2 wavebands.

Stepwise regression on spectral data estimates the ground cover
fraction of five post-fire components (GV, UBS, char, ash, and a
combination of char/ash) to at least an accuracy of R2

adj: P 0.60 in
the best model. Estimation of components more related to moder-
ate fire severity, like NPV and BS, has not achieved this accuracy
level (R2

adj: < 0.40), although the wavebands selected were always

statistically significant at a q level of 0.05. Overall, R2
adj: values are

largest for FDS and smallest for BD data.
GV is the ground cover best estimated, with R2

adj: values uni-
formly high (greater than 0.70) between all three forms of data
in the training dataset, which can be attributed to the relative ease
of sensing the canopy vegetation. Regarding the wavebands
selected in the models, the well-documented contrast between
red and NIR regions is the key to the predictive power of this
ground cover: two wavebands (from the NIR plateau and red edge)
on HCRF data and a single-band model on FDS (a band with one of
the highest positive changes in reflectance) and BD data (one of the
deepest bands of the 680-nm absorption feature). The R2

adj: between
the estimated and observed GV fraction is slightly larger in the PEF
validation dataset (a mean increment of R2

adj: of 0.06, Table 5),
which could be explained simply on the basis of n alone. Good
results in the IZWF validation dataset (R2

adj: even higher except on
the HCRF data) demonstrate the predictive power of these equa-
tions in a real application on samples from two different wildfires
and different sensor. Although R2

adj: is a useful guide to the relative
differences observed, the absolute error is of greatest interest for
practical applications. These errors in GV estimation are very small
and similar in magnitude (RMSE in the range 7.5–12.8). Consider-
ing the largest R2

adj: in the three datasets and the lowest RMSE in the
IZWF validation dataset, with the closest 1:1 fit between observed
and estimated GV fractions (Fig. 5. left column), FDS data can be
considered the best predictor of this ground cover.

UBS, char, and ash (the latter two both as individual ground
cover and as a combined product) are not well estimated from
BD data (Table 5) due to the absence of absorption processes, as
timations is reported for training and validation datasets both in terms of the R2
adj: and

Training dataset
(PEF, n = 217)

Validation dataset
1 (PEF, n = 88)

Validation dataset
2 (IZWF, n = 51)

R2
adj:

RMSE R2
adj:

RMSE R2
adj:

RMSE

0.724 8.809 0.787 7.828 0.658 12.755
24) 0.506 15.618 0.676 14.625 0.389 28.887

0.465 8.391 0.526 8.582 0.486 35.469
4) 0.786 6.520 0.771 7.241 0.368 32.697
4) 0.689 13.274 0.744 12.734 0.789 39.643

0.745 8.471 0.779 8.048 0.896 7.475
0.607 13.925 0.730 13.466 0.708 18.034

7.99) 0.620 7.077 0.606 7.889 0.297 36.137
.83) 0.598 8.929 0.569 9.655 0.112 29.535

0.685 13.308 0.705 13.390 0.711 33.119

0.705 9.118 0.777 8.045 0.898 11.663

hown in this table. All presented models are significant at q < 0.05. The base name of
wavelengths are given in nm.



Fig. 5. Scatterplots of HCRF (above) and FDS (below) derived fractional ground cover versus the ground data in the IZWF validation dataset. Linear regression lines are shown
as solid lines and the 1:1 fit is shown as dotted lines.
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described in Section 4.1. In UBS estimation, the different spectral
behavior between the shortest bands of NIR and blue regions is
highlighted in the HCRF model, and the reflectance change ratio
in the first half of the same blue region is emphasized in the FDS
model. Estimation achieves a moderate level of accuracy; about
50% and 60% of the variance in the data is explained by HCRF
and FDS values, respectively, with very similar RMSE values. Vali-
dation on PEF data increases the accuracy in both spectral data
(R2

adj: 0.17 higher in HCRF data and 0.12 higher in FDS data with a
decrease of RMSE around 0.5–1 points). However, there is a
marked difference in the results obtained on the IZWF validation
set. Whereas FDS data show an R2

adj: value of 0.71 and a RMSE
slightly higher but in line with those of the PEF training and valida-
tion datasets, on HCRF data R2

adj: falls below 0.4 and RMSE stands at
values near 30, two times higher (Table 5 and Fig. 5. middle col-
umn). This change can be explained by the previously mentioned
(Section 4.1) differences in magnitude of the reflectance values of
UBS between burned areas; differences that disappear in the
derivative spectral data (Fig. 4).

Char and ash, as individual ground covers, can be estimated to a
moderate to high accuracy level, as shown in the results of the
training and validation dataset of PEF (Table 5). HCRF data seem a
better predictor of ash fraction and conversely FDS data can be
considered best suited for char fraction estimation. However, the
performance of both spectral data is weaker when applying the
empirical models to burned areas different from that on which
they were developed (R2

adj: < 0.4 and RMSE in the range from
29.5% to 35.5%). Considering the wavebands selected, HCRF equa-
tions reflect the different spectral behavior in reflectance values
of the two ash-related covers; the char model highlights a NIR
waveband (longest wavelength of the spectral range), whereas
the ash model focuses on two VIS wavebands (from blue and green
regions). The spectral homogenization associated with first deriva-
tive transformation (both ground covers draw an almost flatted
line, Fig. 4) hinders estimation of these ground covers in an individ-
ual approach. Thus, although the equations are different, the dis-
tance between the first wavebands of both models (responsible
for 97% of the total variance explained by the models and both
located around 750 nm) is just 4 nm.
As a char/ash combined ground cover, the results on HCRF and
FDS data show a similar pattern in the PEF training and validation
datasets (R2

adj: � 0.7 and RMSE � 13). Although in the practical
application to other burned areas an underestimation of ground
cover fraction is still observed (RMSE around 35), the fit between
observed and estimated fractions improves to values above 0.7
(Table 5 and Fig. 5 right column). Considering the similarity of
the statistics in these two equations, two factors explain the selec-
tion of FDS as the best-suited spectral data in estimating the char/
ash combined ground cover: the development of a single-band pre-
diction model and the noise-related problems that could be associ-
ated with a model, like the HCRF, based on two wavebands exactly
placed on the endpoints of the spectral range.
5. Discussion

As has been reported in many studies (a.o. Lentile et al., 2009;
Lewis et al., 2011, 2008; Riaño et al., 2002; Smith et al., 2007),
quantification of post-fire ground cover can be used to estimate
immediate effects and – more important for the management of
burned areas – to predict ecosystem response with better results
than those offered by the traditional spectral indices. Subpixel-
based methods are the techniques most commonly used to derive
abundance estimates of dominant ground components. If, by way
of illustration, an R2

adj: threshold of 0.50 is selected, comparison of
unmixed-derived estimates and observed fractions is below the
threshold for the application of SMA or MTMF techniques (Lewis
et al., 2007; Robichaud et al., 2007) and higher adjusted determina-
tion coefficients are only achieved when the multiple endmember
SMA (MESMA) is used (Veraverbeke et al., 2012a). Unmixing thus
becomes a complex technique that requires advanced data pro-
cessing and careful selection of endmembers to fulfill the general
criteria of spectral separability, spectral representativity, and spa-
tial generality (Quintano et al., 2013).

The empirical approach adopted in this study is proposed as an
alternative method capable of providing damage assessment in a
quick and objective manner – something that is very important
to enable effective and timely management responses. Empirical
studies are not a common approach in the identification and
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quantification of the components of burned areas. However, some
examples can be found, with good results, as in the recent work of
Pleniou and Koutsias (2013) where linear regression models were
fitted to the spectral channels of Landsat and ASTER imagery to
estimate the percentage of burned and non-burned areas at the
pixel level with a high degree of accuracy (R2 > 0.80). In the current
study, developed at a detailed field scale, we sought to estimate the
individual components of burned areas from hyperspectral data.
Although tested in previous research for fire severity assessment
(Kokaly et al., 2007; Parra, 2005), derivative and absorption data
are for the first time used in the present study to derive fractional
estimates of post-fire ground cover.

Empirical models developed explain the 60–75% of the variation
of ground cover fractions. Percentage of unexplained variance can
be attributed to a combination of factors: (i) possible deviations in
the area sensed by both sensors – digital camera and field spectro-
radiometer – as they are not registering simultaneously; (ii) errors
related to the assumption of a homogeneous circular FOV of the
field spectroradiometers (Mac Arthur et al., 2007), which means
that reflectance of some classified pixels could have not been reg-
istered and viceversa; (iii) confusion errors in the classification
process; (iv) underestimation of reflectance in some samples due
to shadows; (v) errors in the estimation when the observed vari-
able is 0, because the absence of an specific ground cover do not
clearly correspond to a single value of the dependent variable;
and (vi) restriction to the 400–900 nm spectral range, that does
not consider changes in reflectance associated to differences in
water content or absorption bands specific of the senesced mate-
rial or different soil characteristics.

Good results achieved in the estimation of GV and char/ash –
those ground covers associated with extreme fire severity levels
– are a general trend in the studies focusing on this approach to fire
severity (Lewis et al., 2007; Veraverbeke et al., 2012a). In the same
way, difficulties observed in the estimation of moderate severity
levels are also a constant, not only in the quantification of NPV
ground cover (Finley and Glenn, 2010) but also in other severity
approaches based on indices like the CBI (De Santis and
Chuvieco, 2007), the dNBR (Murphy et al., 2008), or the RdNBR
(Miller et al., 2009). Specialized studies consider char and ash to
be the post-fire ground covers with the greatest capacity to predict
ecosystem response (Hudak et al., 2013); conversely, NPV fraction
offers the worst performance (Hudak et al., 2007; Lentile et al.,
2009). On this basis, the ability to quantify char/ash abundance is
perhaps the most significant highlight of this research. Considering
the spectral restriction to the VNIR region (400–900 nm), it is
important to highlight that, although better results could be
attained from VSWIR data, recent research has demonstrated the
great potential of the NIR region in discriminating ground cover
classes (Veraverbeke et al., 2014) or in estimating the percentage
of burned areas at pixel level (Pleniou and Koutsias, 2013).

Three main issues should be considered for practical applica-
tions: the empirical approach, the time perspective, and hyper-
spectral data availability. The applicability of empirical models to
different ecosystems or fire characteristics is always a difficult
issue (Roy et al., 2013). In the current study, the models developed
and validated in an experimental fire (PEF) were applied to samples
from two natural wildfires (IWF and ZWF). Though still focused on
Mediterranean shrubland formations, these two areas represent a
different scenario regarding (i) plant species composition, (ii) fire
characteristics, and (iii) field spectra measurements (sensor with
a different spectral interval, spectral resolution and SNR, as
described in Section 3.1.3). The results achieved in the comparison
of observed and HCRF-estimated fractions reveal the problems
associated with the application of the models obtained from this
spectral variable. Differences in reflectance values between burned
areas, especially in UBS and ash ground cover, prevent general use
of these models. The reverse is the case in the equations developed
on FDS data. Derivative spectra of post-fire ground cover proved
broadly similar across the three burned areas (Section 4.1), giving
good results in the comparison of observed and FDS-estimates and
giving confidence in the applicability of the models. The main
drawback observed in using FDS data is their inability to derive
individual char and ash fractions, which could be especially impor-
tant in helping to establish the threshold between moderate and
high fire severity (Smith et al., 2010).

A second general limitation impacting this approach is that fire
severity effects are mostly shortlived and therefore should be
assessed in a short time window. Within days to months after fire
activity, ash layers and vegetation remains are redistributed by
wind, surface runoff, or by being incorporated into the soil
(Balfour et al., 2014; Pereira et al., 2013; Pérez-Cabello et al.,
2012). Fulfillment of this temporal requirement is even more diffi-
cult when spectral data availability is considered. On the one hand,
proximal sensing is not a feasible approach for fire severity assess-
ment in practical applications, because ground sampling procedure
is time-consuming (as observed in Ibieca and Zuera study sites),
labor intensive and restricted by the difficulties of access. On the
other hand, hyperspectral images are currently acquired on
demand by tasking spacecrafts (e.g. EO-1 Hyperion) or aircrafts
(e.g. AVIRIS or CASI), which makes data acquisition expensive,
logistically challenging and, consequently, not practical for direct-
ing post-fire mitigation efforts. In this context, two ways of
improvement of hyperspectral data availability are identified. First,
the upcoming spaceborne imaging spectrometry (IS) missions,
such as EnMAP or HyspIRI, that, when fully operational, will allow
consistent global mapping of fire severity. Second, the great evolu-
tion of Unmanned Aerial Vehicles (UAVs) (Colomina and Molina,
2014), an effective and flexible technology which satisfy the require-
ments of spatial, spectral, and temporal resolutions. Moreover, in the
last decade, technological advances have made the development of
micro-UAVs possible and affordable (Berni et al., 2009). Potential
of this technology has been proved in fire science for monitoring,
detecting and fighting forest fires (Martínez-de-Dios et al., 2007;
Wing et al., 2014; Yuan et al., 2015), improving the cost effectiveness
of such activities (Christensen, 2015). Recent relevant developments
on hyperspectral sensors, with instruments like Hyperspec (Head-
wall Photonics, Inc.), capable of fitting the new class of lightweight
UAVs, open the possibility to use this technology for fire severity
assessment. Good results obtained in agricultural applications
(Calderón et al., 2013; Zarco-Tejada et al., 2012, 2013) demonstrate
the potential of these micro-hyperspectral imaging sensors on board
of small UAV platforms to predict post-fire cover types.
6. Conclusions

The present study approaches to fire severity assessment through
the quantification of post-fire ground covers. Specifically, empirical
relationships were established between the HSRP-derived estimates
of seven post-fire ground cover types and six sets of spectral data in
three burned areas of Mediterranean shrubland.

A marked difference in the performance of the six datasets was
observed. Taking a nominal R2

adj: threshold of 0.50, stepwise regres-
sion on absorption datasets (BD, BDR, NBDI, and BNA) estimates
the abundance of only one ground cover (GV) to at least this accu-
racy; HCRF data increase this to four categories (GV, UBS, ash, and
char/ash); and FDS data increase this further to five components
(GV, UBS, char, ash, and char/ash). The best results were observed
in the abundance estimation of GV, and char/ash ground covers.
FDS data can be considered the best spectral variable for the
following reasons: (i) the accuracy of estimations in the training
dataset was always equal or better in this dataset; (ii) the results
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of the application in the natural wildfires surpass those obtained
with the other spectral data; (iii) the high predictive power
attained with single-band models; and (iv) the absence of noise-
related problems associated with the use of wavebands placed
on the endpoints of the spectral range. Considering the FDS equa-
tions developed on this study, the near-infrared region has the
highest discriminatory power for GV and ash-related ground cov-
ers and the blue region is especially suited for UBS estimation.

These empirically-based models may aid fire severity assess-
ment by providing valuable information with which to predict
ecosystem responses and, consequently, to guide strategies and
restoration actions. Future work should explore validation in
forested areas and other ecosystems, and analyze the improvement
provided by the short-wave infrared spectral region. Additionally,
an effort should be made to adapt the developed models to the
spectral characteristics of different multi- and hyperspectral
remote sensors, aiming for a more regional assessment of fire
severity.
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