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A B S T R A C T

The aim of this research study is to propose a prototype online detection system based on the visible and near-
infrared spectroscopic (vis/SW-NIR) technique for the real-time evaluation of the soluble solids content (SSC) of
sugarcane billets on an elevator conveyor. The system consisted of two main parts, a cane billet elevator and a
spectral acquisition device. An elevator speed of 2 m/s was used for the transfer of sugarcane billets. Spectra
acquisition was performed using four 50W tungsten halogen lamps as a light source in conjunction with vis/SW-
NIR spectrometer in reflectance mode. Partial least squares regression (PLSR) was subsequently used to correlate
the spectra with the experimentally determined SSC values. The model performance was then assessed using an
independent prediction set. The model was found to display a coefficient of determination of prediction (R2) of
0.785, a root mean square error of prediction (RMSEP) of 0.30 and a residual predictive deviation (RPD) of 2.16.
The result on the prediction set confirm that the proposed system is suitable for the online SSC measurement of
the sugarcane billets on an elevator conveyor.

1. Introduction

Sugarcane is one of the principal raw materials used in sugar pro-
duction worldwide. It is an economically important crops, with a global
export value of around 27 billion USD in 2017 (http://www.tradema-
p.org/Country_SelProduct.aspx?nvpm=1|||||1701|||4|1|1|2|1||2|1|1).
Brazil is the world’s largest sugarcane producer and sugar exporter,
followed by Thailand and France. Brazil has been a pioneer in the use of
sugarcane to produce alternative fuels in the form of ethanol. It pro-
duces more than 20bn liters of ethanol a year from sugar and is ex-
pected to reach 50bn liters a year by 2020 (Cookson, 2012).

Demand for cane sugar derived ethanol fuels have been consistently
growing in other parts of the world. This has prompted efforts to
achieve improvements in agricultural productivity in terms of crop
yield and quality without necessarily increasing the amount of farmland
being employed. The primary industrial sugarcane quality index is
defined by the commercial cane sugar (CCS) parameter which is the
percent of recoverable sucrose from fresh cane. This measure of sugar
content is used for pricing and trading between growers and sugar mills
(Dixon and Johnson, 1988). Variation in the sugarcane CCS parameter
is dependent on numerous factors including; cultivar, age, moisture,

nutrient and temperature (Naderi-Boldaji et al., 2016). Lawes et al.
(2000) studied the spatial variability in CCS, finding that it was up to 9
units in an individual field. They noted that site-specific management of
the field input and activities could help minimize the CCS variation by
maximizing the yield and/or quality of the production in the less pro-
ductive areas.

Precision agriculture (PA) are all-encompassing tools or technolo-
gies to improve the management of agricultural production processes
through the recognition of limiting production factors, soil fertility as
well as the variation in yield and quality across a given field. It is one of
the means for crop management strategies (Bramley, 2009). Never-
theless, its application requires the generation of a spatial variability
map to perform the necessary site-specific management of industrial
farms. The key issue is developing an efficient, cost effective ways of
determining PA in such situations.

Bramley (2009) reviewed PA applications in the sugarcane industry
and found that to monitor the sugarcane yield and to construct varia-
bility maps was not necessarily an arduous process. However, the
monitoring of crop quality during harvesting, and the production of the
subsequent map was still going on the research and still based on the
laboratory scale. This prompted the development of several field based
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techniques for rapid sugar cane quality measurement including; elec-
tronic refractometers (Mccarthy and Billingsley, 2002), microwaves
(Nelson, 1987; Klute, 2007; Shah and Joshi, 2010) and spectroscopic
techniques (Nawi et al., 2013a, 2013b). The refractometer based
method required a mechanism for squeezing cane juice prior to mea-
surement, while the non-destructive microwave and spectroscopic
methods proved to be useful in the laboratory but were unproved in
field use. This prompted Nawi et al. (2014) to propose that a spectro-
scopic method had real potential for field use if installed on the elevator
conveyor used during sugarcane harvesting. This would allow for the
direct measurement of the soluble solids content (SSC, °Brix) of su-
garcane, without the requiring the direct analysis of the sugarcane
juice.

The spectroscopic technique of Nawi et al. (2013a) utilizes an area
of the electromagnetic spectrum that covers the wavelength range from
around 350–2500 nm. Visible and shortwave near-infrared spectro-
scopy (vis/SW-NIR), 350–1100 nm, appear to be promising bands as
these are typically ascribed to the third and fourth overtones of O-H and
C-H stretching modes (Walsh et al., 2000) that are present in sugar
molecules. In addition, the method has been used to determine the
value of SSC for the sugarcane stalk (Nawi et al., 2013b) and it has been
claimed that it has the potential to be developed into a sensor for
monitoring sugarcane quality during harvesting (Nawi et al., 2014).

In an effort to develop an online sugarcane quality measurement, a
prototype system for SSC prediction was developed and tested. The
goals of this work are twofold (1) to propose an online detection system
of the sugarcane billets based on the vis/SW-NIR technique and could
be installed on the elevator conveyor of the sugarcane harvester; (2) to
evaluate the performance of the system for online SSC measurement of
the sugarcane billets on the elevator conveyor.

2. Material and methods

2.1. Sample preparation

Fifty clumps of sugarcane were collected from fields in Suphan Buri,
Thailand, in February 2017. Each clump is comprised of approximately
20 stalks which were cut into billets with approximately length of
20 cm. The cane variety was Khonkaen 3, one of the most common
commercial varieties in Thailand. The sugarcane were collected at ap-
proximately 11 and 12months after planting in order to cover the
different maturity stages in commercial harvesting period of this su-
garcane variety.

2.2. On-line detection system and spectral acquisition

An online measurement system (Fig. 1) had been developed in this
study for monitoring the value of SSC in sugarcane billets. The system
consisted of two main parts – a cane billet elevator and a spectral ac-
quisition system. The elevator used in the study was built with the same
dimensions as those of a common sugarcane harvester (John Deere
3520). It was set at an angle of 32° from the ground. The elevator was
divided into three distinct regions for controlling the velocity speed.
The starting and ending regions, each being one meter in length, were
used for ramping up and down the speed to and from the stationary
state. The middle region, which was two meters in length, was set to
deliver the sugar cane at a constant conveying speed. Two slats were
mounted to the conveyor chain. The upper one was used to trigger the
acquisition switch and the lower one was used for moving the billets
along the elevator. The sample movement was set according to the
velocity profile as shown in Fig. 1a. The acquisition system was used to
collect the spectral data of the billet group as it moved along the ele-
vator. A chamber was built around the acquisition device to allow for
the installation of a constant light source and to protect interference
from environment light. Four halogen lamps (Aluline Halogen 12 V
R111, Royal Philips, Holland) were mounted at a distance of 60 cm and

at 45° away from the elevator floor. A vis/NIR spectrometer (AvaSpec-
2048-USB2, Avantes BV, Netherlands) was installed, operating in the
spectral range of 350–1100 nm with the spectral resolution of 2.4 nm.
The amount of light reflected from the samples was collected using a
25° field-of-view (FOV) of the optic fiber that was fitted to the spec-
trometer and was fixed at 9 cm over the top edge of the slat on the
elevator. At that distance, the scanning area covered a circle of ap-
proximately 4 cm diameter (Fig. 1b). The spectrometer was set to scan
the spectra using an external trigger.

An appropriate integration time must be specified to achieve the
optimum system sensitivity. Based on our chamber environment, the
integration time was set to 14ms, yielding approximately 90% full-
scale Analog-to-Digital Converter (ADC) of the reference material re-
flectance. Each triggering of the device led to the collection of 19
spectral scans (one set of scans), with the integration time set to cover
the spectral measurement between 2 slats (a distance of 52 cm) with a
conveying speed of 2m/s (typical speed of the elevator of the sugarcane
harvester and the speed used in this study).

In order to obtain four representative optical spectral sets of each
clump, two replications with two repeated measurements were ob-
tained. One set of scans was performed for each repeated measurement.
After finishing the first measurement, the slat and chain were retracted
to the starting position before proceeding with the second measure-
ment. This was performed without reshuffling the cane billets. To date,
two sets of spectra (19 spectra each) were obtained for first replication.
The cane billets were then collected for °Brix (SSC) determination
(detailed in the next section). With the first replication, two spectral
sets and a corresponding SSC value were acquired. After the first re-
plication, the remaining billets were removed from the elevator and
reshuffled before reloading to the elevator for the second replication
(using the same procedure). Therefore, four sets of spectra (2×19
spectra for the 1st replication+2×19 spectra for the 2nd replication)
and two SSC values (for the 1st and 2nd replications) were obtained for
each billet clump. Two hundred spectral sets, along with 100 SSC va-
lues were obtained in total.

2.3. Soluble solids (°Brix) determination

Reference SSC values for the sugarcane billets those lied on the
scanning path (Fig. 1b) were obtained by squeezing the billet in a small
hydraulic press. The juice from each billet was stirred, screened with
filter paper, and immediately poured onto a digital refractometer
(Pocket PAL-1, ATAGO, Japan) to enable °Brix measurement. The SSC
values obtained from each replication were averaged.

2.4. Spectral filtration

Spectral bands outside the range of 450–900 nm were first removed
due to excessive noise. This is because during the continuous online
measurement, many spectra from various sources are scanned and re-
corded necessitating a spectral screening process to filter out non-su-
garcane related spectra. All 200 spectral sets obtained from the pre-
viously described experiments were performed using this process. Each
of the spectral sets contained spectra from 3 different sources - cane,
slats and floor – as showed in Fig. 2. Undesirable spectra from the slats
and floor must be removed before further analysis. Slat spectra could be
easily filtered out if the difference in percent reflection value at the
wavelength of 550 and 620 nm was higher than 0.6. For floor spectra,
the reflection value at 800 nm was used as the marking point to elim-
inate this group of spectra from the set. The eliminated spectra were
those with the reflection at the marking point less than 20%. In addi-
tion, spectra from partial scans of sugarcane with weak signal were also
eliminated.
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2.5. NIR modeling

After the filtration step above, 150 sets of spectra remained for
modeling against their SSC values. Note that 50 sets of spectra were
eliminated. Partial least square (PLS) regression is regarded as one of
the most popular linear statistical methods for modeling the linear re-
lationships between the variable matrix X or the spectra and the vari-
able matrix Y or the properties of interest (Jie et al., 2014). It was
applied in order to obtain the linear model correlating the online
spectra of sugarcane billets on the elevator with their SSC. In this study,
the software used for multivariate analysis (Unscrambler X 10.3, Camo,
Norway) was used in both spectral pretreatment and model develop-
ment.

To obtain the model with more reliable performance, this necessi-
tated the formation of two independent datasets, which were obtained
by randomly splitting the 100 sets of spectra with their corresponding
SSC from 150 sets mentioned above to be calibration set. The other set
(50 sets) was used for external testing set. However, from observation,
signal noises and offset were spectral characteristics that have a

negative impact on model development. Spectral pretreatment is a key
step to improve the model accuracy. Several techniques including
smoothing, multiplicative scatter correction (MSC), standard normal
variate (SNV) scaling, mean normalization and baseline offset were
applied in the calibration and the external testing sets separately to
overcome these characteristics. In this paper, moving average (MA)
smoothing with segment size of 21 points was first applied to minimize
spectral noises and then the others were individually applied to di-
minish the offset effect in spectra. After the pretreatments, each spectral
set in both datasets were averaged. Thus, 100 samples and 50 samples
with matching averaged spectra and their SSC were obtained and ready
for PLS modeling and the external testing, respectively.

To initially seek an optimum model based on the data obtained from
different pretreatments, the PLS models were developed and validated
using the leave-one-out cross-validation. The optimum one was selected
based on high coefficient of determination (R2) and low root mean
square error of cross-validation (RMSECV). Then, this selected model
was used to test its true performance by predicting the external testing
set. This procedure is a more realistic measure of model performance as

Fig. 1. Scheme of an online measurement system, (a) side view and (b) top view.
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the samples used in the analysis were not used to develop the initial
model. The model performance is assessed statistically using the coef-
ficient of determination (R2) of prediction, root mean square error of
prediction (RMSEP) and residual predictive deviation (the standard
deviation to standard error of prediction, RPD).

3. Results

3.1. Spectral description

Four different spectral pre-processing methods were considered in
this study including moving average (MA)+ baseline offset,
MA+mean normalization, MA+MSC and MA+SNV. Fig. 3 shows
the spectra after the filtration process, while Fig. 4 shows the spectra in
the calibration dataset after the pre-processing operations. The nor-
malized descriptors were used for modeling against the average SSC
values. The effect of noise in the original spectra was minimized by
utilizing the smoothing technique (MA). The baseline offset, one of
mathematical techniques well known in the correction of offset existing
in group of spectra, was applied in this study to diminish some effects
that occur during the spectral detection. There is still a scattering effect
in the spectra, which is tolerable if eliminated by the other pretreat-
ments, particularly the MSC and SNV operations.

The absorption region at around 670–680 nm, which could be seen
clearly in all pretreated spectra, appears to be related to the chlorophyll
content at the peel (Guo et al., 2003) of cane billets. The prominent
peak does not appear in the region around 700–900 nm, instead, this
region is the location of the bands typically related to the third or fourth

overtone C-H and O-H stretching of both sugar and water groups
(Ecarnot et al., 2013; Guo et al., 2003; Osborne et al., 1993; Golic, et al.,
2003).

3.2. Near-infrared spectroscopy models for SSC prediction

Fig. 5 shows the distribution of the SSC values used for PLS mod-
eling and external testing. A summary of their statistical characteristics
for the two sets are shown in Table 1. The 100 average spectra after
pretreatments were used for modeling against the average SSC values
and evaluated with full cross-validation to initially seek an optimum
model. The regression and validation results for SSC prediction with
different pretreatments are shown in Table 2 and corresponding re-
gression coefficient plots are displayed in Fig. 6. The models con-
structed from the spectra pretreated by the smoothing (MA) and com-
bined with SNV, MSC and normalization show good performances.
They provide R2 values approximately 0.7–0.8 and RMSECV values of
around 0.3 °Brix. Among the best models, the optimum one was that
obtained using MA+SNV, displaying an R2 and RMSECV of 0.807 and
0.33 °Brix, respectively. On the other hand, using the spectra obtained
from the MA+Baseline offset operation provides the lowest R2 and
highest RMSECV values of 0.656 and 0.45 °Brix, respectively. For the
regression coefficient plots, their spectral patterns look similar. The two
dominant peaks at 755 and 890 nm stand out.

To confirm the independent prediction performance of the PLS
model from MA+SNV operation, the external validation was per-
formed. This selected model presents the performance for predicting a
series of 50 samples not used during model generation by explaining
the 78.5% of the variation existing in this dataset. RMSEP and RPD
values of 0.30 °Brix and 2.16 were obtained, respectively. The corre-
sponding scatter plots are displayed in Fig. 7.

4. Discussion

Based on the results of the spectral pre-processing methods applied
in this study, we found that they improve the linear relationship ob-
tained between the spectral signals and the SSC values which were
obtained from the sugarcane billets moving on the elevator. Good
predictability was obtained using three pre-processing techniques after
spectral smoothing including mean normalization, MSC and SNV. They
are not different because these techniques have the same concept for
solving the scattering effect existing in the spectra. Among the three
spectral treatment methods, the MSC and SNV techniques provided the
best results (R2 and RMSECV). The SNV technique is more suitable for
practical application, especially for our proposed system, due to there is
no need for a reference spectrum. Self-correction is achieved by using
only the standard deviation and mean of the scan in question.

To build robust PLS models, it is important to have a large sample
size with good sample variability. Low variability in the SSC values
used for modeling in this study was caused by collecting only one su-
garcane variety with a narrow range of maturity stages. Although ex-
panding the variability could be done by starting the sampling before
11months after cane planting, it is not necessarily useful for real world
application since it is not desirable to harvest such immature sugarcane.
Given the emphasis on the primary evaluation, the proposed system for
online SSC measurement of the sugarcane, it is adequate for this study.
However, to obtain more robust models samples of several cane culti-
vars with different ranges of maturity (°Brix) could be added in the
future application.

With the spectral range of 450–900 nm used for the PLS modeling,
the coefficient plots show that the models contained two sugar related
peaks at 755 nm (the 4th overtone of C-H stretching of sugar at 762 nm
(Osborne et al., 1993) or the 3rd overtone of O-H stretching of sucrose
in water at 740 nm (Golic et al., 2003)) and 890 nm (the 3rd overtone of
C-H stretching of sucrose in water at 910 nm (Golic et al., 2003)). Based
on those, the absorption bands relating sugar are mainly weighted

Fig. 2. An example of NIR spectra obtained from a group of the sugarcane
billets on the elevator.

Fig. 3. The sugarcane spectra remained from the filtration of all sample groups.
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when predicting a particular SSC value of sugarcane billets moving on
the elevator.

Typically, a few latent variables (LVs) are required to describe most
of the data variance, however, the first LV accounts for the greatest
amount of variance (Nawi et al., 2013b). Additionally, it is desirable to

use only a limited number of LVs in the model to avoid the inclusion of
signal noise (Xiaobo et al., 2007). In this study only 4 LVs were used to
explain the data variance in the SSC values.

This laboratory scale analysis is an important first step in the de-
velopment of an on-the-go sensing system for the assessment of cane
yield and quality during harvesting. The results presented here show
the potential of online vis/SW-NIR spectroscopic techniques for the
determination of soluble solids content in sugarcane billets moving on
an elevator. From the findings present here, it should be possible to
adapt this technique as an all-encompassing tool for PA already had the
ability in yield assessment. This combination would allow the produc-
tion of spatial variability maps describing the yield and quality within
sugarcane farmlands. This variability map could help farmers reach
their yields and quality responses, customize crop input and maximize
farm profits. This could also allow the establishment of a fairer payment
system for growers and allow mills to optimize their production pro-
cesses.

Fig. 4. Average NIR spectra pretreated by different pretreatments, MA+baseline offset (Top left), MA+mean normalization (Top right), MA+MSC (Bottom left)
and MA+SNV (Bottom right).

Fig. 5. Frequency histograms of the soluble solids content values used for PLS
model development (100 samples) and external testing (50 samples).

Table 1
Statistical SSC values of sugarcane billets used in developing and testing the PLS
model.

Dataset N Max Min Mean SD

Calibration set 100 24.5 21.2 22.6 0.76
External testing set 50 23.9 21.4 22.6 0.66

N is the number of samples. Max is maximum. Min is minimum. SD is standard
deviation.

Table 2
Regression and validation results for SSC prediction with different pretreat-
ments.

Pre-Processing Calibration Validation

LVs R2 RMSEC R2 RMSECV

MA+Baseline offset 4 0.695 0.42 0.656 0.45
MA+Mean Normalization 4 0.821 0.32 0.767 0.37
MA+MSC 4 0.844 0.30 0.805 0.34
MA+SNV 4 0.846 0.30 0.807 0.33

Note: LVs is Latent variables, MA is moving average method, MSC is
Multiplicative scatter correction, SNV is Standard normal variate.
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5. Conclusion

In this work a lab-scale prototype of an online detection system has
been designed and developed for the real-time SSC assessment of the
sugarcane billets on an elevator conveyor. The system detects the
spectra of the cane billets which are conveyed at the speed of 2m/s
(typical speed of a sugarcane harvester elevator) using an integration
time of 14ms. PLS modeling was used to correlate the obtained spectra
with the SSC values. The results showed that the system is certainly
feasible for the online SSC measurement of the sugarcane billets on the
elevator, with an R2, RMSEP, and RPD values of 78.5%, 0.30 °Brix and

2.16 for the prediction set, respectively. Nevertheless, it is acknowl-
edged that modeling with a dataset consisting of a greater number of
sugarcane cultivars is necessary for a production of on-the-go SSC
sensing system. This additional validation would help to improve the
robustness of method for online SSC measurements in real world su-
garcane fields.

This on-the-go sensing system would benefit agriculturists in that it
would minimize yield and quality variations across sugarcane farmland.
A further side effect would be the establishment of a fairer payment
system for the growers reflecting the quality of their product and op-
timized production processes within mills.

Fig. 6. Regression coefficient plots of the models constructed from the different pretreated spectra, MA+Baseline offset (Top left), MA+Mean normalization (Top
right), MA+MSC (Bottom left) and MA+SNV (Bottom right).

Fig. 7. PLS model with external validation constructed from the spectra pretreated with MA combined with SNV, comparison of SSC predicted by PLS model and
measured by the standard reference for (a) the calibration set and (b) the external testing set.
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